Impact of Image Patchification on the Segmentation Performance of Deep Learning Methods with Applications to Mountain Glacier Area Segmentation

Joy Gao

Department of Statistics | Purdue University Graduate Mentor: Robbie Breininger Faculty Mentor: Dr. Nezamoddin Nezamoddini-Kachouie

01 Introduction

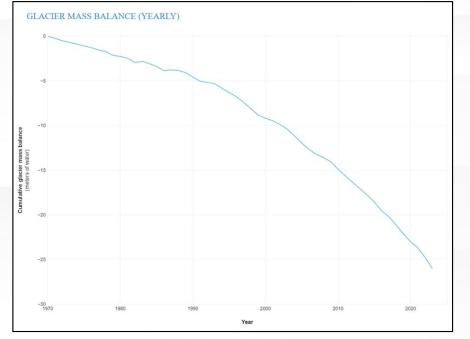
Why are glaciers important?

Glaciers are an essential part of life

- Supports over 1 billion people
 - Resources
 - Economic Benefits
 - Socio-political Impacts
 - Maintains biodiversity

The_Mountain_Exhaled.jpg: laszlo-photoderivative work: Nikopol, CC BY-SA 2.0 https://creativecommons.org/licenses/by-sa/2.0, via Wikimedia Commons

Glaciers and Climate Change



It is important to measure glaciers and their change over time.

(Lindsey, 2024)

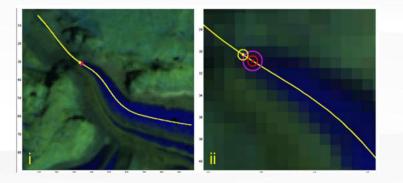
02 Previous Work

What has been done already?

Terminus Localization

Edge Detection

Region Growing



(Kachouie et al., 2013)

Neural Network

Output

D1

NDWI

Hole filling

Region size

thresholding

D2

D3

Pooling Unpooling Softmax E: Encoder D: Decdoer

D4

Combine Binary Images

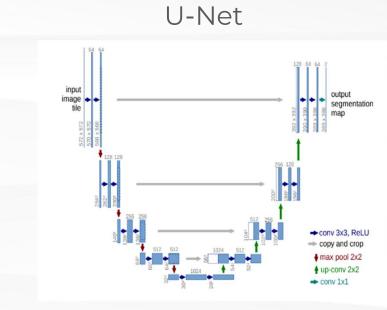
(Xie et al., 2020)

CNN Structure

Post-processing

 $CONV \rightarrow BN \rightarrow ReLu$

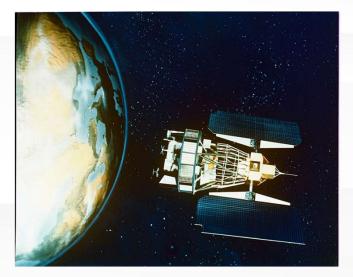
Binary Images



(Ronneberger et al., 2015)

03 Datasets

What is the data?



National Archives and Records Administration, Public domain, via Wikimedia Commons

Remote Sensing

- The process of detecting and monitoring physical characteristics of an area by measuring it's reflected and emitted radiation from a distance

Uses:

- Cameras on satellites and airplanes
- Sonar systems on ships

Landsat Satellite Imagery

- NASA database of satellite images
- Crosses every point in the world every 16 days
- 1,500 scenes a day jointly from Landsat 8 and Landsat 9

Franz Josef Glacier

- Southern Alps of New Zealand
- 12 kilometers long
- Good for hiking

¹Labelled Data

Global Land Ice Measurements From Space (GLIMS)

- From the National Aeronautics and Space Administration
- International project to inventory the world's estimated 200,000 glaciers
- Uses data collected from satellites
- Binary
 - Glacier
 - Not Glacier



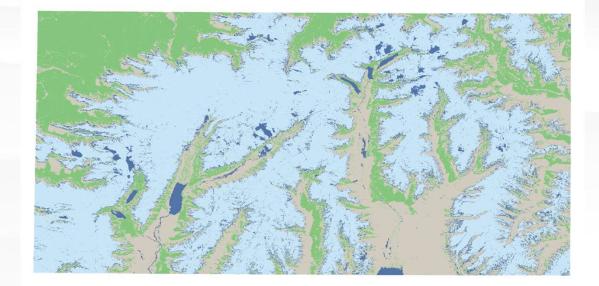
1 find resolutions of each

Joy Gao, 6/27/2024

²Labelled Data

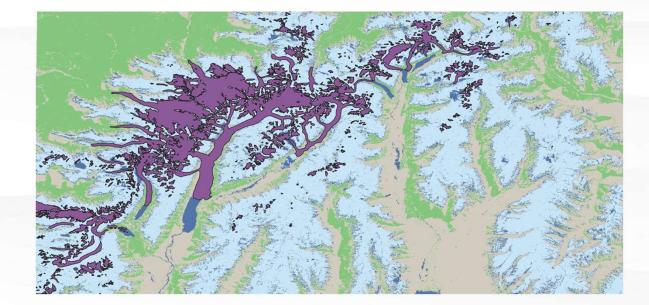
New Zealand Land Cover Database

- Multi-temporal, thematic classification of New Zealand's land cover
- Multi-Class:
 - Permanent Ice and Snow
 - Water
 - Vegetation
 - Barren Land
 - Unlabelled



2 find resolutions of each

Joy Gao, 6/27/2024



³Discrepancies Between GLIMS and New Zealand Land Cover

S	id	e '	14
---	----	------------	----

3 permanent ice and snow --> includes glaciers, not all glacier tho

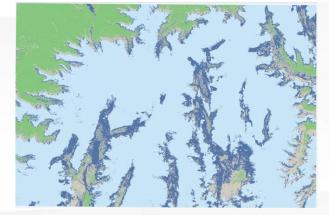
new zealand bases their stuff on their classification system through satellite photos --> not specifically mapping glaciers

GLIMS specifically maps glaciers Joy Gao, 6/28/2024



Current Dataset

- 18 Landsat Images
- 18 matching masks from the New Zealand Land Cover Database



Landsat/Mask Image Size: 2048x3072 Over 6.2 million pixels

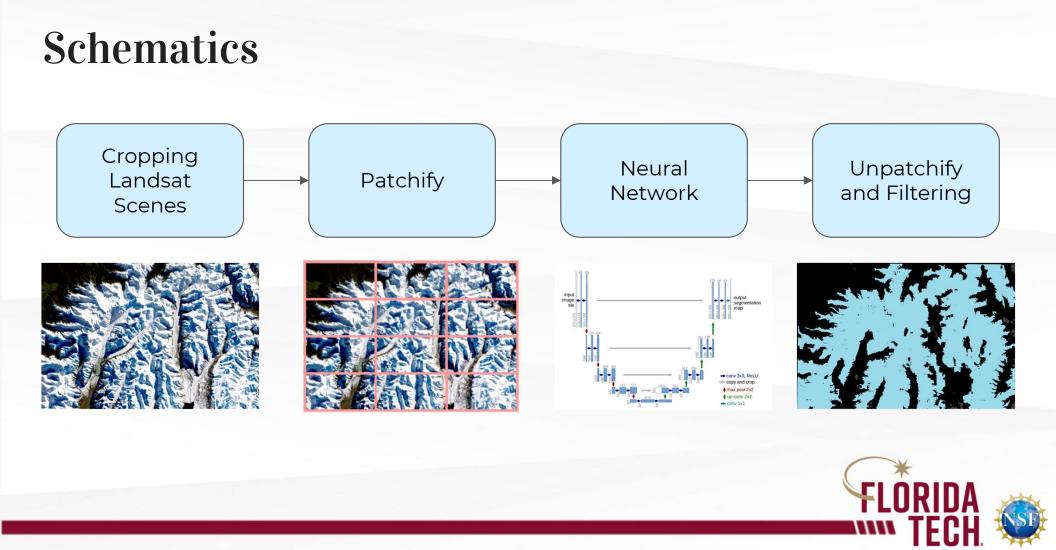
04 Methods What have I done?

Research Question

⁴ What is the impact of image patchification on the segmentation performance of deep learning methods with applications to mountain glacier image segmentations?

S	li	d	e	1	7	
---	----	---	---	---	---	--

4 fix Joy Gao, 7/1/2024



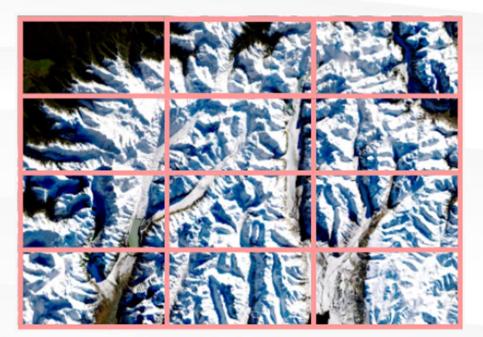
⁶ Patchify

What is the need for patchifying the image?

- The image is too big
 - Over 6.2 million pixels

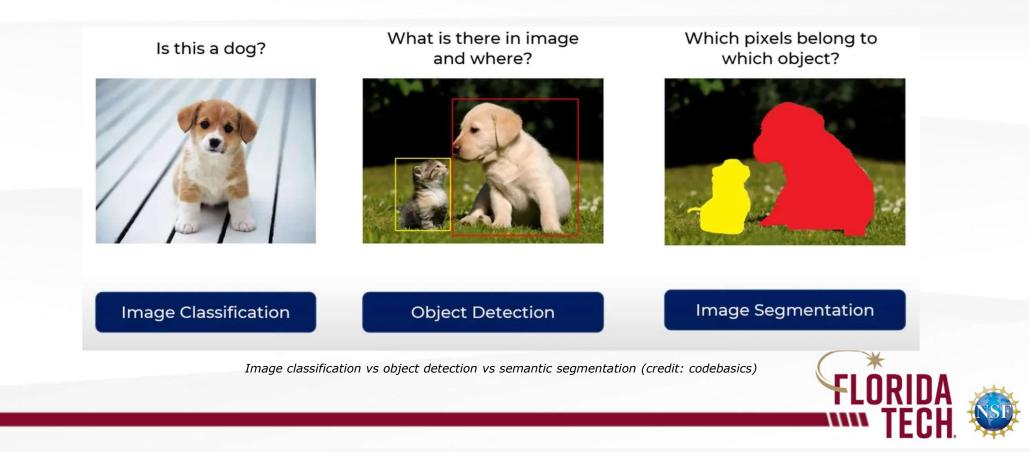
What is the optimal patch size?

- Larger patches → extremely complex neural network
- Smaller patches → problems after segmentation



Slide 19	
5	can i say that the patches are processed independently? Joy Gao, 7/1/2024
6	network is not keeping track of what patch goes where> considering each patch as its own separate image Joy Gao, 7/1/2024

Image Segmentation



Current Architecture: U-Net

9 convolution blocks

Block Structure:

- 1. 3x3 Convolution
- 2. Rectified Linear Unit Activation
- 3. 0.2 Dropout
- 4. 3x3 Convolution
- 5. Rectified Linear Unit Activation

Encoder:

- Ends with 2x2 Maxpooling

Decoder:

- Starts with 2x2 Transposed Convolution and Skip Connection



Optimizations

Original Encoder Convolution Block Structure

- 1. 3x3 Convolution
- 2. Rectified Linear Unit Activation
- 3. 0.2 Dropout
- 4. 3x3 Convolution
- 5. Rectified Linear Unit Activation
- 6. 2x2 Max Pooling

Optimized Encoder Convolution Block Structure

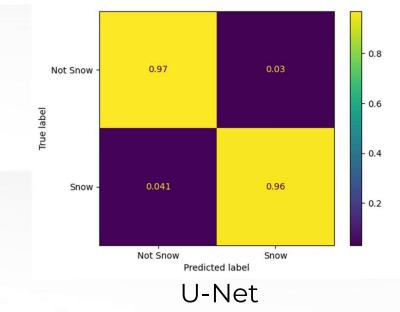
- 1. 3x3 Convolution
- 2. Rectified Linear Unit Activation
- 3. 2x2 Max Pooling

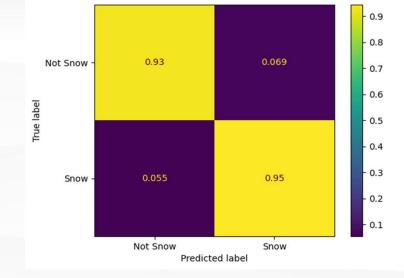
Changed the dropout in the last convolution block of the encoder from 0.3 → 0.2

Comparing U-Net Patch Sizes

Patch Size	Snow(T), Snow(P)	Not Snow(T), Not Snow(P)	Not Snow(T), Snow(P)	Snow(T), Not Snow(P)
64	0.94	0.97	0.03	0.061
128	0.97	0.96	0.039	0.031
256	0.97	0.96	0.03	0.044
512	0.97	0.95	0.046	0.025

⁷GlacierNet and U-Net Comparison: 256x256





GlacierNet

7

1. talk about the axes

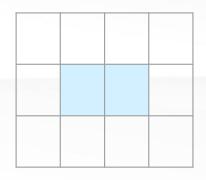
2. talk about the boxes/compare the two --> based on pixels classified into this set, turned into percentage Joy Gao, 6/28/2024

Unpatchify

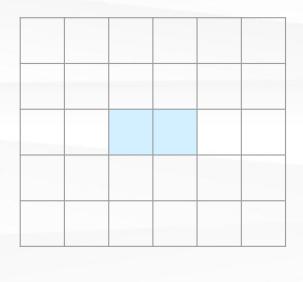
- Stitching the patches back together after going through the neural network
- Discrepancies at the borders between patches

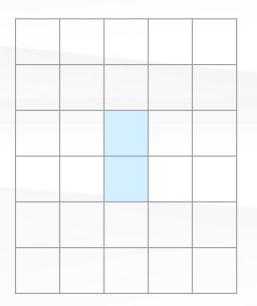
Methods Tested

- 1. Median Filtering
- 2. Mean Filtering
- 3. Mode Filtering
- 4. Gaussian Blur
- 5. Bilateral Filtering
- 6. Morphological Operations
 - Opening
 - Closing
 - Dilation
 - Erosion
 - Black Hat
 - Top Hat
 - Morphological Gradient



Filter Size: 6x5, 5x6





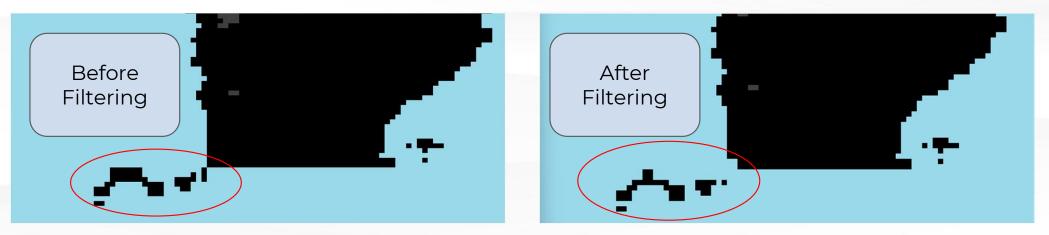
Patch Sizes: 128, 256

Median Filtering: replacing pixel value with median of the neighborhood

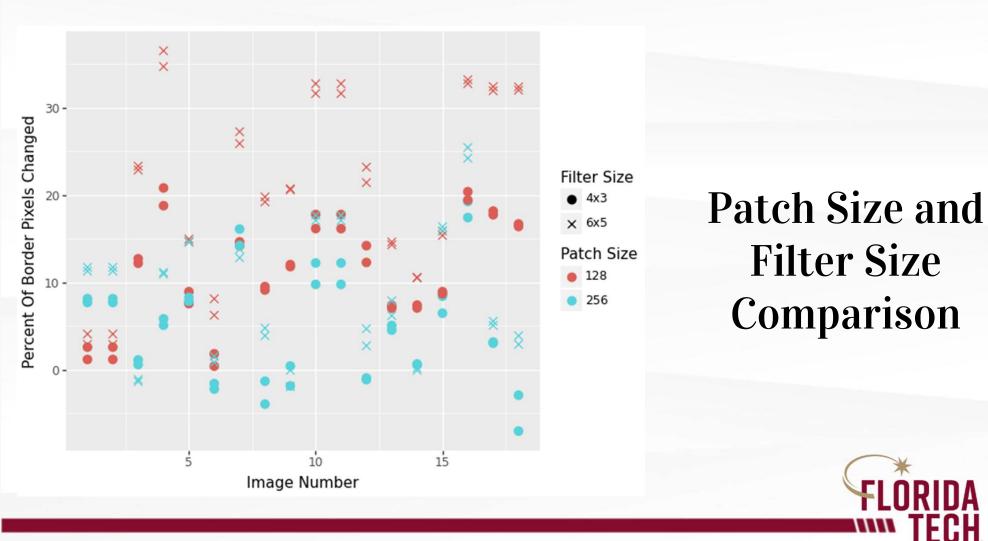
Mode Filtering: replacing pixel value with mode of the neighborhood

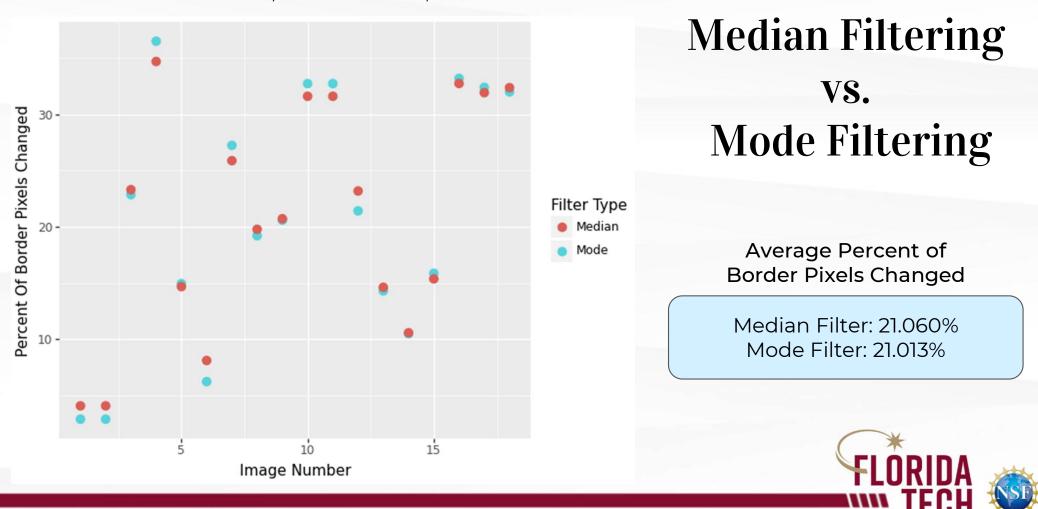
36.487% Positive Increase in Changed Border Pixels

Median Filtering



34.681% Positive Increase in Changed Border Pixels





Patch Size: 128x128, Filter Size: 6x5, 5x6

Discussion

Neural Networks:

- U-Net outperforms GlacierNet (with caveats)
- Best Performing Patch Sizes: 128, 256
- **Border Discrepancies:**
 - Best Performing Patch Size: 128
 - Best Performing Filter Size: 6x5, 5x6
 - Mode and median filtering perform very comparably

Ilya Grigorik, CC BY-SA 3.0 <https://creativecommons.org/licenses/bysa/3.0>, via Wikimedia Commons

05 Future Work

What can be done now?

Improve Filtering

- Using more complex and sophisticated filtering methods
- Expanding to more glaciers over longer periods of time
 - Using different bands to make the Landsat images
- Differences between GLIMS and New Zealand Land Cover Database
 - Trying different architecture for the neural network

Thank you

Questions?

- Azam, Mohd. F., Kargel, J. S., Shea, J. M., Nepal, S., Haritashya, U. K., Srivastava, S., Maussion, F., Qazi, N., Chevallier, P., Dimri, A. P., Kulkarni, A. V., Cogley, J. G., & Bahuguna, I. (2021). Glaciohydrology of the Himalaya-Karakoram. *Science*, *373*(6557). https://doi.org/10.1126/science.abf3668
- Cauvy-Fraunié, S., & Dangles, O. (2019). A global synthesis of biodiversity responses to Glacier Retreat. *Nature Ecology & Colution, 3*(12), 1675–1685. https://doi.org/10.1038/s41559-019-1042-8
- Chaudhary, P., Rai, S., Wangdi, S., Mao, A., Rehman, N., Chettri, S., & Bawa, K. S. (2011). Consistency of local perceptions of climate change in the Kangchenjunga Himalaya landscape. Current Science, 504-513.
- "Global Land Ice Measurements from Space (GLIMS)." NASA, NASA, www.earthdata.nasa.gov/technology/global-land-ice-measurements-space-glims. Accessed 27 June 2024.
- Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18-27. https://doi.org/10.1016/j.rse.2017.06.031
- Fu, G., Liu, C., Zhou, R., Sun, X., Zhang, Q., & Gao, J. (2017). Land-use classification based on high-resolution remote sensing imagery and deep learning models. PLOS ONE, 12(7), e0180239. https://doi.org/10.1371/journal.pone.0180239
- Kachouie, N. N., Huybers, P., & Schwartzman, A. (2013). Localization of mountain glacier termini in landsat multi-spectral images. *Pattern Recognition Letters*, 34(1), 94–106. https://doi.org/10.1016/j.patrec.2012.07.003
- Klemas, V., & Yan, X.-H. (2014). Subsurface and deeper ocean remote sensing from satellites: An overview and new results. Progress in Oceanography, 122, 1–9. https://doi.org/10.1016/j.pocean.2013.11.010

- Konchar, K. M., Staver, B., Salick, J., Chapagain, A., Joshi, L., Karki, S., ... & Ghimire, S. K. (2015). Adapting in the shadow of Annapurna: a climate tipping point. Journal of Ethnobiology, 35(3), 449-471.
- Lindsey, R. (2024, May 10). Climate change: Mountain glaciers. NOAA Climate.gov. https://www.climate.gov/news-features/understanding-climate/climate-changemountain-glaciers
- Masek, J. G., Wulder, M. A., Markham, B., McCorkel, J., Crawford, C. J., Storey, J., & Jenstrom, D. T. (2020). Landsat 9: Empowering open science and applications through continuity. Remote Sensing of Environment, 248, 111968.
- McLeish, W., Swift, D. J. P., Long, R. B., Ross, D., & Merrill, G. (1981). Ocean surface patterns above sea-floor bedforms as recorded by radar, Southern Bight of North Sea. Marine Geology, 43(1–2). https://doi.org/10.1016/0025-3227(81)90121-3
- Mellander, C., Lobo, J., Stolarick, K., & Matheson, Z. (2015). Night-Time Light Data: A Good Proxy Measure for Economic Activity? PLOS ONE, 10(10), 1-18. https://doi.org/10.1371/journal.pone.0139777
- "New Zealand Land Cover Database." New Zealand Land Cover Database National Environmental Data Centre, nedc.nz/content/new-zealand-land-cover-database/. Accessed 27 June 2024.
- Onyejekwe, O., Holman, B., & Kachouie, N. N. (2017). Multivariate models for predicting glacier termini. *Environmental Earth Sciences*, 76(23). https://doi.org/10.1007/s12665-017-7135-2
- Ren, D., & Leslie, L. M. (2011). Three positive feedback mechanisms for ice-sheet melting in a warming climate. *Journal of Glaciology*, 57(206), 1057–1066. https://doi.org/10.3189/002214311798843250

- Robbins, E., Hlaing, T. T., Webb, J., & Kachouie, N. N. (2023). Supervised methods for modeling spatiotemporal glacier variations by quantification of the area and terminus of mountain glaciers using remote sensing. Algorithms, 16(10), 486. https://doi.org/10.3390/a16100486
- Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. In *Medical Image Computing and Computer-Assisted* Intervention – MICCAI 2015 (pp. 234-241). Springer International Publishing. <u>https://doi.org/10.1007/978-3-319-24574-4_28</u>
- Roy, D. P., Wulder, M. A., Loveland, T. R., Woodcock, C. E., Allen, R. G., Anderson, M. C., ... & Zhu, Z. (2014). Landsat-8: Science and product vision for terrestrial global change research. Remote sensing of Environment, 145, 154-172.
- Sherpa, P. (2014). Climate change, perceptions, and social heterogeneity in Pharak, Mount Everest region of Nepal. Human Organization, 73(2), 153-161.
- Vergara, W., Deeb, A., Valencia, A., Bradley, R., Francou, B., Zarzar, A., ... & Haeussling, S. (2007). Economic impacts of rapid glacier retreat in the Andes. Eos, Transactions American Geophysical Union, 88(25), 261-264.
- What are the band designations for the Landsat Satellites?. What are the band designations for the Landsat satellites? | U.S. Geological Survey. (n.d.). https://www.usgs.gov/faqs/what-are-band-designations-landsat-satellites
- What is remote sensing and what is it used for?. What is remote sensing and what is it used for? | U.S. Geological Survey. (n.d.). https://www.usgs.gov/faqs/what-remote-sensing-and-what-it-used
- Why glaciers matter. National Snow and Ice Data Center. (n.d.). https://nsidc.org/learn/parts-cryosphere/glaciers/why-glaciers-matter

- Wulder, M. A., Loveland, T. R., Roy, D. P., Crawford, C. J., Masek, J. G., Woodcock, C. E., ... & Zhu, Z. (2019). Current status of Landsat program, science, and applications. Remote sensing of environment, 225, 127-147.
- Wulder, M. A., Roy, D. P., Radeloff, V. C., Loveland, T. R., Anderson, M. C., Johnson, D. M., ... & Cook, B. D. (2022). Fifty years of Landsat science and impacts. Remote Sensing of Environment, 280, 113195.
- Xie, Z., Haritashya, U. K., Asari, V. K., Young, B. W., Bishop, M. P., & Kargel, J. S. (2020). Glaciernet: A deep-learning approach for debris-covered glacier mapping. IEEE Access, 8, 83495–83510. https://doi.org/10.1109/access.2020.2991187

O6 Supplementary

Extra Clarification and Detail

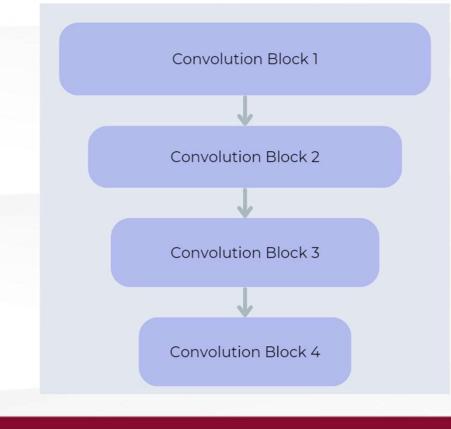
Bands

Landsat 8-9 Operational Land Imager (OLI) and Thermal Infrared	
Sensor (TIRS)	

Bands	Wavelengt h (micromet ers)	Resolution (meters)
Band 1 - Coastal aerosol	0.43-0.45	30
Band 2 – Blue	0.45-0.51	30
Band 3 – Green	0.53-0.59	30
Band 4 - Red	0.64-0.67	30
Band 5 – Near Infrared (NIR)	0.85-0.88	30
Band 6 – Shortwave Infrared (SWIR) 1	1.57-1.65	30
Band 7 - Shortwave Infrared (SWIR) 2	2.11-2.29	30
Band 8 - Panchromatic	0.50-0.68	15
Band 9 - Cirrus	1.36-1.38	30
Band 10 - Thermal Infrared (TIRS) 1	10.6-11.19	100 (resampled to 30)
Band 11 - Thermal Infrared (TIRS) 2	11.50-12.51	100 (resampled to 30)

FLORIDA

GlacierNet Encoder



CONVOLUTION BLOCK STRUCTURE

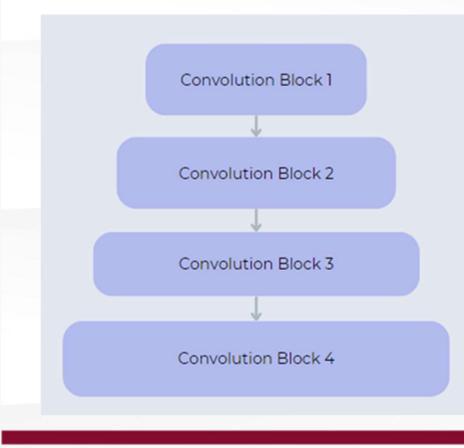
2D Convolution Layer: 32 filters, 5x5 filter Batch Normalization Rectified Linear Unit Activation

2D Convolution Layer: 32 filters, 5x5 filter Batch Normalization Rectified Linear Unit Activation

2D Convolution Layer: 32 filters, 5x5 filter Batch Normalization Rectified Linear Unit Activation

Max Pooling: 2x2 filter

GlacierNet Decoder



CONVOLUTION BLOCK STRUCTURE Up Sampling: 2x2 filter

2D Convolution Layer: 32 filters, 5x5 filter Batch Normalization Rectified Linear Unit Activation

2D Convolution Layer: 32 filters, 5x5 filter Batch Normalization Rectified Linear Unit Activation

2D Convolution Layer: 32 filters, 5x5 filter Batch Normalization Rectified Linear Unit Activation

FLORIDA

Process

PROCESS

- 1. Make a binary mask from the multi-class mask
- 2. Filter along all the internal borders of the fully unpatchified Landsat scene
- Compute the pixel-wise error between the binary mask and the filtered scene

808 internal borders = 206,848 pixels

