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Introduction
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Why are glaciers important?



Glaciers are an 
essential part 
of life

- Supports over 1 billion people 
- Resources
- Economic Benefits
- Socio-political Impacts

- Maintains biodiversity 
The_Mountain_Exhaled.jpg: laszlo-photoderivative work: Nikopol, CC BY-SA 2.0 

<https://creativecommons.org/licenses/by-sa/2.0>, via Wikimedia Commons



Glaciers and Climate Change

(Lindsey, 2024)

It is important to measure 
glaciers and their change 

over time.



Previous Work
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What has been done already?



Edge Detection Terminus Localization

(Kachouie et al., 2013)

Region Growing



Neural Network

(Xie et al., 2020)

GlacierNet

(Ronneberger et al., 2015)

U-Net



Datasets
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What is the data?



Remote Sensing 
- The process of detecting and monitoring 

physical characteristics of an area by 
measuring it’s reflected and emitted 
radiation from a distance

Uses:

- Cameras on satellites and airplanes 
- Sonar systems on ships 

National Archives and Records Administration, 
Public domain, via Wikimedia Commons



- NASA database of satellite images
- Crosses every point in the world 

every 16 days 
- 1,500 scenes a day jointly from 

Landsat 8 and Landsat 9

Landsat Satellite Imagery



Franz Josef Glacier
- Southern Alps of New 

Zealand
- 12 kilometers long
- Good for hiking



Labelled Data

Global Land Ice 
Measurements From Space 

(GLIMS)

- From the National Aeronautics 
and Space Administration

- International project to 
inventory the world's 
estimated 200,000 glaciers

- Uses data collected from 
satellites

- Binary
- Glacier
- Not Glacier

1
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1 find resolutions of each
Joy Gao, 6/27/2024



Labelled Data

New Zealand Land Cover 
Database

- Multi-temporal, thematic 
classification of New Zealand's 
land cover

- Multi-Class: 
- Permanent Ice and Snow
- Water
- Vegetation
- Barren Land
- Unlabelled

2
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2 find resolutions of each
Joy Gao, 6/27/2024



Discrepancies 
Between GLIMS 
and New Zealand 
Land Cover

3



Slide 14

3 permanent ice and snow --> includes glaciers, not all glacier tho

new zealand bases their stuff on their classification system through satellite photos
--> not specifically mapping glaciers

GLIMS specifically maps glaciers
Joy Gao, 6/28/2024



Current Dataset
- 18 Landsat Images
- 18 matching masks from the 

New Zealand Land Cover 
Database

Landsat/Mask Image Size: 2048x3072
Over 6.2 million pixels



Methods
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What have I done?



Research Question
What is the impact of image patchification on the segmentation

performance of deep learning methods with applications to 
mountain glacier image segmentations?

4
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4 fix
Joy Gao, 7/1/2024



Cropping 
Landsat 
Scenes

Patchify Neural 
Network

Unpatchify 
and Filtering

Schematics



Patchify
What is the need for patchifying 
the image?
- The image is too big

- Over 6.2 million pixels

What is the optimal patch size?
- Larger patches → extremely 

complex neural network
- Smaller patches → problems 

after segmentation

56
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5 can i say that the patches are processed independently?
Joy Gao, 7/1/2024

6 network is not keeping track of what patch goes where --> considering each patch as its own separate image
Joy Gao, 7/1/2024



Image Segmentation

Image classification vs object detection vs semantic segmentation (credit: codebasics)



Current Architecture: U-Net
9 convolution blocks

Block Structure:
1. 3x3 Convolution
2. Rectified Linear Unit Activation
3. 0.2 Dropout
4. 3x3 Convolution
5. Rectified Linear Unit Activation

Encoder:
- Ends with 2x2 Maxpooling

Decoder: 
- Starts with 2x2 Transposed Convolution 

and Skip Connection



Optimizations

Changed the dropout in the 
last convolution block of the 

encoder from 0.3 → 0.2

1. 3x3 Convolution
2. Rectified Linear Unit Activation
3. 0.2 Dropout
4. 3x3 Convolution
5. Rectified Linear Unit Activation
6. 2x2 Max Pooling

Original Encoder 
Convolution Block Structure

1. 3x3 Convolution
2. Rectified Linear Unit Activation
3. 2x2 Max Pooling

Optimized Encoder 
Convolution Block Structure



Patch Size Snow(T), Snow(P)
Not Snow(T), Not 

Snow(P)
Not Snow(T), 

Snow(P)
Snow(T), Not 

Snow(P)

64 0.94 0.97 0.03 0.061

128 0.97 0.96 0.039 0.031

256 0.97 0.96 0.03 0.044

512 0.97 0.95 0.046 0.025

Comparing U-Net Patch Sizes



GlacierNet and U-Net Comparison: 256x256

GlacierNetU-Net

7
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7 1. talk about the axes
2. talk about the boxes/compare the two --> based on pixels classified into this set, turned into percentage
Joy Gao, 6/28/2024



Unpatchify
- Stitching the patches back 

together after going through 
the neural network

- Discrepancies at the borders 
between patches

1. Median Filtering
2. Mean Filtering
3. Mode Filtering
4. Gaussian Blur
5. Bilateral Filtering
6. Morphological Operations

- Opening
- Closing
- Dilation
- Erosion
- Black Hat
- Top Hat
- Morphological Gradient

Methods Tested



Median Filtering: replacing pixel value 
with median of the neighborhood

Mode Filtering: replacing pixel value 
with mode of the neighborhood

Filter Size: 4x3, 3x4 Filter Size: 6x5, 5x6

Patch Sizes: 128, 256



Before 
Filtering

After 
Filtering

Mode Filtering: 

36.487% Positive Increase in Changed Border Pixels



Median Filtering

Before 
Filtering

After 
Filtering

34.681% Positive Increase in Changed Border Pixels



Patch Size and 
Filter Size 

Comparison



Median Filtering 
vs.

Mode Filtering

Median Filter: 21.060%
Mode Filter: 21.013%

Patch Size: 128x128, Filter Size: 6x5, 5x6

Average Percent of 
Border Pixels Changed



Discussion 

Neural Networks:
- U-Net outperforms GlacierNet 

(with caveats)
- Best Performing Patch Sizes: 128, 

256
Border Discrepancies:
- Best Performing Patch Size: 128
- Best Performing Filter Size: 6x5, 

5x6
- Mode and median filtering 

perform very comparably 

Ilya Grigorik, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-
sa/3.0>, via Wikimedia Commons



Future Work
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What can be done now?



Improve Filtering
- Using more complex and sophisticated filtering methods
- Expanding to more glaciers over longer periods of time

- Using different bands to make the Landsat images
- Differences between GLIMS and New Zealand Land Cover 

Database
- Trying different architecture for the neural network



Questions?
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Extra Clarification and Detail



Bands



GlacierNet Encoder



GlacierNet Decoder



Process 

808 internal borders = 206,848  
pixels


